Microstructure of frontoparietal connections predicts cortical responsivity and working memory performance.

نویسندگان

  • A Z Burzynska
  • I E Nagel
  • C Preuschhof
  • S-C Li
  • U Lindenberger
  • L Bäckman
  • H R Heekeren
چکیده

We investigated how the microstructure of relevant white matter connections is associated with cortical responsivity and working memory (WM) performance by collecting diffusion tensor imaging and verbal WM functional magnetic resonance imaging data from 29 young adults. We measured cortical responsivity within the frontoparietal WM network as the difference in blood oxygenation level-dependent (BOLD) signal between 3-back and 1-back conditions. Fractional anisotropy served as an index of the integrity of the superior longitudinal fasciculi (SLF), which connect frontal and posterior regions. We found that SLF integrity is associated with better 3-back performance and greater task-related BOLD responsivity. In addition, BOLD responsivity in right premotor cortex reliably mediated the effects of SLF integrity on 3-back performance but did not uniquely predict 3-back performance after controlling for individual differences in SLF integrity. Our results suggest that task-related adjustments of local gray matter processing are conditioned by the properties of anatomical connections between relevant cortical regions. We suggest that the microarchitecture of white matter tracts influences the speed of signal transduction along axons. This in turn may affect signal summation at neural dendrites, action potential firing, and the resulting BOLD signal change and responsivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Socioeconomic disparities in academic achievement: A multi-modal investigation of neural mechanisms in children and adolescents.

Growing evidence suggests that childhood socioeconomic status (SES) influences neural development, which may contribute to the well-documented SES-related disparities in academic achievement. However, the particular aspects of SES that impact neural structure and function are not well understood. Here, we investigate associations of childhood SES and a potential mechanism-degree of cognitive st...

متن کامل

Enhancement of Visuospatial Working Memory by Transcranial Direct Current Stimulation (tDCS) on Prefrontal and Parietal Cortices

Objective: Previous studies have reported dorsolateral prefrontal cortex (DLPFC) and posterior parietal (PPC) activation during the performance of spatial working memory (SWM), so we decided to investigate the comparison of Transcranial Direct current stimulation (tDCS) effect between these two areas. Methods: Fifty-four healthy right-handed students (27 female, 27 male; age= 24.3±.2 years) w...

متن کامل

Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness

Feedback learning is a crucial skill for cognitive flexibility that continues to develop into adolescence, and is linked to neural activity within a frontoparietal network. Although it is well conceptualized that activity in the frontoparietal network changes during development, there is surprisingly little consensus about the direction of change. Using a longitudinal design (N=208, 8-27 years,...

متن کامل

Neural Correlates of Visual Working Memory fMRI Amplitude Predicts Task Performance

We used fMRI to investigate how moment-to-moment neural activity contributes to success or failure on individual trials of a visual working memory (WM) task. We found that different nodes of a distributed cortical network were activated to a greater extent for correct compared to incorrect trials during stimulus encoding, memory maintenance during delays, and at test. A logistic regression anal...

متن کامل

Morphometry and connectivity of the fronto-parietal verbal working memory network in development.

Two distinctly different maturational processes - cortical thinning and white matter maturation - take place in the brain as we mature from late childhood to adulthood. To what extent does each contribute to the development of complex cognitive functions like working memory? The independent and joint contributions of cortical thickness of regions of the left fronto-parietal network and the diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 21 10  شماره 

صفحات  -

تاریخ انتشار 2011